
FT-INDEX: A Distributed Indexing Scheme for
Switch-Centric Cloud Storage System∗

Xiaofeng Gao∗∗, Binjie Li, Zongchen Chen, Maofan Yin, Guihai Chen, Yaohui Jin
Shanghai Jiao Tong University, Shanghai, 200240, P.R.China

{gao-xf, gchen}@cs.sjtu.edu.cn, {iamlibinjie, chenzongchen, jinyh}@sjtu.edu.cn, {ted.sybil}@gmail.com

Abstract—Nowadays, cloud storage systems may contain tens
of thousands of servers and large scale data sets, which sig-
nificantly require efficient data management scheme and query
processing mechanism. To fulfill these requirements in modern
data centers, the infrastructure of cloud systems, we propose FT-
Index, a secondary indexing scheme for cloud system with switch-
centric topology. FT-Index has a two-layer design. The upper-
layer index, called global index, is distributed across different
hosts in the system, while the lower-layer index, named local
index, is a B+-tree for local query. We further adopt the Interval
tree to reorganize the global index and propose two versions of
FT-Index with different publishing methods to lower the rate of
false positives and reduce the cost of forwarding queries. We
provide detailed theoretical analysis on the upper bound of false
positives, physical hops per query, and the relationship between
them. We also conduct abundant experiments to validate the
efficiency of FT-Index.

I. INTRODUCTION

Nowadays, cloud storage systems have been widely used
in both industrial fields and academic research to reach scala-
bility, manageability, low latency and satisfy the requirements
of data-intensive applications, like GFS [1], Cassandra [2],
Dynamo [3], etc. With the emergence of different cloud
storage systems, diverse indexing schemes have been proposed
to support both large-scale analytical jobs and high concurrent
OLTP queries efficiently [4]–[6].

Unfortunately, these indexing frameworks have all been
proposed on P2P networks, whereas nowadays majority of
cloud systems and applications are deployed on data centers,
the system infrastructure with large numbers of servers and
switches interconnected by Data Center Networks (DCN’s).
Unlike P2P Network, whose nodes may scatter widely with
unbounded physical hop distance, DCN has organized underly-
ing network topology and efficient routing protocols, resulting
high-reliability, cost-efficiency, and scalability. The fundamen-
tal difference between P2P network and DCN brings great
difficulties for the implementation of indexing frameworks on
DCNs. As a result, designing distributed indexing schemes on
various DCNs is of great significance.

∗ This work has been supported in part by the China 973 project
(2014CB340303), the National Natural Science Foundation of China (Grant
number 61202024, 61472252, 61133006, 61371084, 61422208), Shanghai
Pujiang Program 13PJ1403900, Shanghai Educational Development Founda-
tion (Chenguang Grant No.12CG09), Natural Science Foundation of Shang-
hai (Grant No.12ZR1445000), Jiangsu Future Network Research Project
No.BY2013095-1-10, and in part by CCF-Tencent Open Fund.

∗∗ X.Gao is the corresponding author.

Correspondingly, in this paper we propose FT-Index, a
secondary indexing scheme for switch-centric DCN, and take
Fat-Tree [7] as an illustration since it is one of the most
popular DCN architectures in academia, with high scalability,
full interconnection bandwidth, low cost with commodity
switches, and backward compatibility with IP/Ethernet. Cisco
applies the Fat-Tree topology in its Massively Scalable Data
Center (MSDC) [8]. We then discuss the generalization of FT-
Index to other switch-centric DCN topologies.

FT-Index consists of a local index layer and a global index
layer. We construct a B+-tree as the local index for each host,
and then distribute local indices across hosts as the global
index for the whole system. To avoid the bottleneck and single-
failure problems, each host only maintains a portion of the
global index according to its potential indexing range. Other
than simply indexing all the data as some traditional proposals
or publishing the local tree nodes as [5], we deliberately design
two novel publishing methods with the help of gap elimination
and Bloom filter to decrease the number of false positives
and total communication cost (referred as FT-Gap and FT-
Bloom). We further facilitate the query processing by adopting
the Interval tree [9] to reorganize the global index.

We then theoretically analyze the efficiency of FT-Index by
calculating the expected number of false positives and physical
hops per query. Surprisingly, the two factors only differ by a
constant and we investigate this relationship thoroughly on
Fat-Tree topology. We also compare the performance of FT-
Index with CG-index [5] by mass experiments, and validate
the efficiency and scalability of our indexing scheme. The
generalization is also involved with more topologies. In all,
we design a novel distributed indexing scheme for efficient
secondary query processing in switch-centric DCN’s.

The rest of this paper is organized as follows: Section II
describes the architecture of FT-Index, introduces two pub-
lishing methods, and proposes query processing algorithms.
Theoretical analysis is shown in Section III. Section IV
empirically validates the performance and efficiency of FT-
Index. Section V concludes the paper.

II. THE DESIGN OF FT-INDEX

There are briefly two types of DCN structures: switch-
centric topology such as Fat-Tree [7], VL2 [10], Elastic-
Tree [11], and Aspen Tree [12], where switches take charge of
majority interconnection and routing works; and server-centric
topology such as BCube [13], DCell [14], FiConn [15] and

IEEE ICC 2015 SAC - Data Storage and Cloud Computing

978-1-4673-6432-4/15/$31.00 ©2015 IEEE 301

2

HCN [16], where servers enable the functions of interconnec-
tion and routing while the switches only provide easy crossbar
function. Majority of commercial data centers adopt tree-like
topologies, which are usually switch-centric. Thus we focus on
switch-centric DCN structure and take Fat-Tree as an example
to illustrate our design.

A. Fat-Tree Topology

A k-ary Fat-Tree consists of three layer of switches (namely
core layer, aggregation layer and edge layer) and at the bottom
of the hierarchy are hosts. There are k pods, each with k

2

edge switches and k
2 aggregation switches, forming a complete

bipartite connection betweenness. Every edge switch connects
k
2 hosts, while every aggregation switch connects k

2 core
switches. The ith port of a core switch is connected to pod i.
In general, a k-ary Fat-Tree can support k3

4 hosts. Fig. 1 is an
example Fat-Tree topology with k = 4. A two level routing
table is introduced to evenly distribute the communication load
in the system and achieve full bisection bandwidth at each
layer. For more details, please refer [7].

Pod 2 Pod 3

10.2.0.1

10.2.2.1

10.2.0.2 10.2.0.310.0.1.2

Pod 0 Pod 1

Aggregation

Edge
10.0.1.1

10.0.2.1

Core
10.4.1.1 10.4.2.1 10.4.2.210.4.1.2

Fig. 1. Fat-Tree Topology (k = 4)

B. Potential Indexing Range

Assume there are n = k3

4 hosts in a Fat-Tree with k pods.
Denote hi as the ith host (from left to right, i ∈ [1, k

3

4]).
In order to achieve efficiency query processing and load
balancing among hosts, we distribute global indices evenly
according to the number of hosts and the range of overall data.
By assigning different range to each host, given any query,
we can figure out the responsible host easily. Assume data in
the system are bounded by D = [L,U). Then an example
potential indexing range of hi can be expressed as follows:

pri =
[
dL + (i− 1)(U − L)/ne, bL + i(U − L)/nc

)
Note that we can assign different potential indexing range for
hi according to the distribution feature of the data.

C. Two-Layer Indexing Architecture

In traditional query processing scheme, queries will be
broadcast to all the hosts in the system, where local search
is performed in parallel. This strategy is simple but neither
efficient nor scalable. Another direct method is to save all the
data partitioning information in a centralized server, which
needs to handle all the queries in the system, consequently
forming the bottleneck and bringing load-balance issue.

In our system, each host hi holds a B+-tree Bi as its local
index to manage its local data. The leaf nodes of the B+-tree
are linked together left-to-right to allow efficient range query.

Next, each host maintains a global index responsible for data in
its pri. Thus when given different queries, they will be handled
by different hosts with corresponding ranges, eliminating the
bottleneck and achieving good query efficiency. Figure 2
illustrates the architecture of our two-layer index.

Local Index

Layer

(B+-Tree)

Global Index

Layer

(Interval Tree)

Key-Value

Storage Layer

Key Value

... ...

... ...

...

Search key

Search key

key key key key

Search key

Key Value

... ...

... ...

...

Search key

Search key

key key key key

Search key
……

hosti hostj

…… …… …… ……

……
……

Fig. 2. The two-layer architecture of FT-INDEX

To construct the global index, hosts should publish some
local information, such as the ranges of local data, to the
hosts with corresponding global index range, so that queries
can be forwarded to the correct host containing the required
datum after checking the global index. To reach higher query
efficiency, we adopt the Interval tree [9], denoted as Ii, to serve
as a global index to organize the ranges (segments in Fig. 2)
published from other hosts. An Interval tree for a set of n
intervals uses O(n) storage and can be built in O(n log n)
time. Thus with Interval tree Ii we can report all intervals
intersecting with the queried range (key) in O(log n + k)
time, where k is the number of reported intervals.

Since publishing the whole subtree causes too much space
and traffic load, host hi selects and publishes some nodes in
its local tree to hj based on prj [5]. An intermediate node in
a local tree only contains range information, so a search query
would be forwarded to all the hosts whose published ranges
intersect with the queried keys. However, such solution would
cause many false positives. For example, a published local
node with range [5,20] has local keys {5,6,9,10,17,18,20},
and any query in the range of [11,16] would be falsely
forwarded to this host since it intersects with the range [5,20].
To decrease the number of false positives, we design two
publishing methods by gap elimination and Bloom filter, and
construct FT-GAP and FT-Bloom respectively.

D. FT-Gap: FT-Index with Gap Elimination

The main idea of FT-Gap is to eliminate g biggest gaps
when publishing the global index. Originally, host hi should
send some nodes of its local tree corresponding to prj to host
hj . In FT-Gap, for the data in the range of prj stored on hi,
we choose g + 1 segments (denoted as Sij = {s1ij ,. . . ,sg+1

ij })
to be published to the global index Ij of host hj by elimi-
nating the biggest g gaps in prj . As the example mentioned
above, the existing keys in a potential range of [5,20] are
{5,6,9,10,17,18,20}. In FT-GAP, if g = 2 then the published
ranges would be [5,6], [9,10], and [17,20] instead of [5,20].

IEEE ICC 2015 SAC - Data Storage and Cloud Computing

302

3

Since each segment does not have physical information, we
need to find a representative node on the local search tree as
a substitute. Define the format of published index items as
(range, ip, addr), where range represents the range of each
segment in Sij and is expressed by two integers; ip represents
the IP address of the local host; and addr is the physical
address of the representative local node on Bi at hi. To find
the most suitable addr for each segment in Sij , we can select
a local node from hi’s B+-tree in a bottom-up fashion from
the leaf with minimum range to its lowest ancestor whose
range can fully cover the segment. Algorithm 1 describes the
process of finding the addr for a given range.

Algorithm 1: nodeChoosing(range)
1 Select a bi in B+-Tree Bi according to range.minimum;
2 while (bi.maximum < range.maximum) do
3 bi = bi.ancestor;

4 return bi.address;

For each hi, it first figures out the actual range according
to prj . Next it eliminates g gaps, finds g + 1 representative
local nodes, and then publishes the global index information to
hj . At hj’s side, it will reorganize the received information by
Interval tree Ij according to the attribute range. Algorithm 2
describes the publishing method in FT-GAP at hi side.

Algorithm 2: indexPublishing
1 for j = 1 to n do // hi publish its local information to each hj

2 rangej = the exact range of the data in prj of hi;
3 Eliminate biggest g gaps in rangej as Sij =

{s1ij ,. . . ,sg+1
ij };

4 for k = 1 to g + 1 do
5 addrk = nodeChoosing(skij);
6 hi publishes (skij , hi.ip, addrk) to Ij ;

E. FT-Bloom: FT-Index with Bloom Filter

A Bloom filter can represent a set A = {a1, a2, . . . , at} of
t elements by using a bit array of s bits, initially all set to 0. l
independent hash functions are used, denoted as f1, f2, . . . , fl,
each producing an integer in the range [1, s]. For each element
ai ∈ A, the bits at positions f1(ai), f2(ai), . . . , fl(ai) in the
array of s bits are set to 1. To check if an element e is in
A, we check whether all hi(e) for 1 ≤ i ≤ l are set to 1.
In FT-Bloom, by tuning the parameters s and l appropriately,
the probability of false positives can be low enough and the
space cost is more efficient than many other methods like hash
coding or tree-based data structures.

Bloom filters can be used as a summary shared among hosts
to demonstrate each host’s existing resources. Different from
FT-Gap, we can add a Bloom filter array instead of eliminating
g biggest gaps. By doing so, we can clearly inform other hosts
that whether the key exists (though with a low probability
of false positives). Compared to Alg. 2, the publishing rule
in FT-Bloom differs in two main respects. Firstly, the format
of published content has changed to (range, filter, ip, addr)
where filter represents the corresponding Bloom filter to

the range. Secondly, for each pri we publish one single
segment instead of g+1 segments. Fig. 3 depicts two different
publishing methods when publishing the data in pri of [5, 20].

FT-Gap FT-Bloom

pri

Eliminate 2 biggest gaps

pri

publish 3 intervals to global index

Calculate Bloom filter array

([5,20], Bloom filter, ip, addr)

publish 1 interval to global index

Initial

Data:

Step 1:

Step 2:

5 6 9 10 17 18 20 1 0 1 1 1 1 11 1 0 1 0

5 6 9 10 17 18 20

([5,6], ip, addr1) ([9,10], ip, addr2) ([17,20], ip, addr3)

5 6 9 10 17 18 20

Fig. 3. A comparison of FT-Gap (g = 2) and FT-Bloom

F. Query Processing Algorithms
Point Query Processing: We take FT-Gap as an example.

When any host receives a point query, it can find out which
host’s global index is responsible for the query by the potential
indexing range. Then the corresponding global index would
return all the ranges that cover the key. Since the key exists
in only one host, many of them are false positives. To reduce
the cost of physical hops, we sort the result set and visit them
in order. As shown in Fig. 1, to make the best use of the Fat-
Tree topology, we sort the result set with their ip in ascending
order (left to right in Fig. 1) such that the relative distance
between two consecutively visited hosts is the shortest. The
same process works for FT-Bloom as well.

Range Query Processing: For the range query, we also take
FT-Gap as an example. We denote a range query as Q(range),
where range = [ql, qu]. To handle a range query, we first
find out which hosts have intersection with the queried range
according to their potential indexing ranges. After that there
exists two conditions: (1) Considering a host hi whose pri
fully covers range, to assure the completeness of results, we
simply take its whole global index set into account and add
them to the result set R. (2) host hj has its prj partly intersects
the range. As a generalization from the point query, we need
to find all the intervals have intersections with the range and
add them to the result set R. Then we have similar process
of sorting and forwarding.

III. THEORETICAL ANALYSIS

In this section, we theoretically evaluate the efficiency
of FT-Index. Section III-A gives the main metrics of our
evaluation and the relationship between them. Section III-B
and Section III-C respectively analyzes the performance of
FT-Gap and FT-Bloom, taking point query as an example.

A. Holistic Analysis
It is necessary to consider the average hop count per query

and try to minimize this metric. We use hop to represent
the number of hops for one point query. Another important
parameter is the number of false positives the processor
generates during the searching process. The goal of FT-Index
is to reduce the number of false positives, denoted by fp, and
consequently the number of hops hop as much as possible.

Theorem 1 reveals the quantitative relationship between the
expected value of hop and fp.

IEEE ICC 2015 SAC - Data Storage and Cloud Computing

303

4

Theorem 1. In a Fat-Tree topology, the expected numbers of
hops and false positives differ only by a constant c, say,

E[hop] = E[fp] + c,

where k is the number of pods in the Fat-Tree topology and
c = k2

2 + k + 13− 4
k −

8
k2 − 16

k3 is a constant.

Proof: First, the query will be forwarded to the corre-
sponding host. For this host, k

2 − 1 other hosts are connected
to the same edge switches of it and it takes 2 hops to forward
the query to them. k2

4 −
k
2 hosts are in the same pod but belong

to different edge switches, and it takes 4 hops for the query
to get there. Other n − k2

4 switches pertain to different pods
and takes 6 hops. Thus, the expected number of hops is

k
2 − 1

n
· 2 +

k2

4 −
k
2

n
· 4 +

n− k2

4

n
· 6 = 6− 2

k
− 4

k2
− 8

k3
,

where we utilize the equation n = k3

4 .
After find all positive hosts, the query will be forwarded

to all these hosts successively, every time to the nearest host
from the current host. The process will not stop until the exact
host that stores the key is found. On average, the number of
hosts that local search is processed is half of those positive
hosts, that is 1

2 (E[fp] + 1). Hence, the hops it will take to
forward query to such number of hosts is
1

2
(E[fp] + 1) · 2 + 1

2

k2

2
· 2 + 1

2
k · 2 = E[fp] +

k2

2
+ k + 1.

Finally, the corresponding information will return to the host
that receives the query. The expected number of hops is the
same as that in step one, which is 6− 2

k −
4
k2 − 8

k3 .
All in all, add up the number of hops in these three steps

and we obtain the expected value of hop:

E[hop] = 2(6− 2

k
− 4

k2
− 8

k3
)+E[fp]+

k2

2
+k+1 = E[fp]+c.

The theorem is thus proved.

B. Performance of FT-Gap

Suppose the boundary of data is [L,U). The length of
potential indexing range each host takes charge of equals
d = U−L

n . Theorem 2 estimates the average number of false
positives during one point query when employing FT-Gap.

Theorem 2. When employing FT-Gap, the expected number
of false positives is formulated approximately as follows:

E[fp] = n− 1− n[1− (1− α)g] lnN,
where n = total no. of hosts, N = d

n − 1, α = (1− 1
2e)/N .

Proof: During the process of point query, the processor
finds all the hosts whose ranges cover the key, and regards
them as positive. Among those hosts, only one does possess
the key, namely true positive, while the others, so-called false
positives, does not have the key although their global index
covers it. More specifically, we have

E[fp] = n− E[tp]− E[neg] = n− 1− E[neg],
where fp(tp) = False(True) Positive, neg = Negative.

Our next objective is to calculate the expected number
of hosts whose ranges does not intersect with the key (i.e.,

negative hosts). By summing up the number of negatives for
each datum in one pr in two ways, we have:

E[neg] =
1

|pr|
∑

datum∈pr

E[neg(key = datum)]

=
1

d

n∑
i=1

E[No. of data; hosti is Neg when key = datum]

=
n

d
E[No. of data; one host does not cover]

In FT-Gap, data that are not included in the ranges of one
certain host can be divided into three categories:

(1). Data smaller than the minimum in ranges. The
possibility that each datum emerges in one particular host is
p = 1

n . Without loss of generality, we assume that the potential
indexing range is [1, d]. Then the expected minimum datum
that is distributed to one certain host is 1

p = n. Consequently,
the expected number of data that are smaller than the minimum
datum in one host is n− 1.

(2). Data larger than the maximum in ranges. Identically,
the expected number of such data is also n− 1.

(3). Data in the gaps that are obligated We need to
estimate the total length of gaps that are eliminated, i.e. the
gross length of g largest gaps in the original range. We use
the notation li to represent the length of the ith largest gap.

First of all, we formulate the expectation of the maximal gap
length l1 as a function of d. As stated, each datum appears
in one particular host with possibility p = 1

n . Thus, the
probability that the maximal gap length l1 is no more than
j, namely the length of all gaps is no more than j, is

Pr(l1 ≤ j)≈
[
1− (1− p)j+1

]E[No. of gaps]
=
(
1− e−(j+1)/n

)N
where N = E[No. of gaps] = d

n − 1.
Then we can obtain the expected value of l1 according to

the property of convex sequences.

E[l1] = −
d−1∑
j=0

Pr(l1 ≤ j) + Pr(l1 ≤ d) · d

=

d−1∑
j=0

[
1−

(
1− e−(j+1)/n

)N]
≈ 1

2

[
1−

(
1− e−1/n

)N
+ 1−

(
1− e− lnN

)N]
n lnN

= (1− 1

2e
)n lnN.

The length of the ith largest gap can be considered as the
largest gap after we obliterate i−1 largest gap. Therefore, we
could derive the iteration as follows:

E[l1] =
(
1− 1

2e

)
n ln

(
d− E[l1]− · · · − E[li−1]

n
− 1

)
=
(
1− 1

2e

)
n

(
lnN − E[l1] + · · ·+ E[li−1]

nN

)
= (1− α)E[l1]− α(E[l2] + · · ·+ E[li−1]),

where α = (1− 1
2e)/N .

By induction, we obtain E[li] = (1− α)i−1E[l1]. Hence, the

IEEE ICC 2015 SAC - Data Storage and Cloud Computing

304

5

expected number of data that are obligated is
g∑

i=1

E[li] =
1− (1− α)g

α
E[l1] = [1− (1− α)g](d− n) lnN.

Finally we acquire our conclusion.

E[fp] = n− 1− n

d
{2(n− 1) + [1− (1− α)g](d− n) lnN}

= (1− 2n

d
)(n− 1)− n(d− n)

d
[1− (1− α)g] lnN

≈ n− 1− n[1− (1− α)g] lnN.
The definitions of N and α have been mentioned above.

With the help of Theorem 1, we can directly obtain the
expected number of hops one query will take.

Theorem 3. The expected number of hops one point query
process takes can be formulated approximately as follows
when we employ FT-Gap:

E[hop] = n− 1− n[1− (1− α)g] lnN + c.

C. Performance of FT-Bloom

Firstly, we estimate the expected amount of false positives
during one point query when adopting FT-Bloom.

Theorem 4. When employing FT-Bloom, the expected number
of false positives is formulated approximately as:

E[fp] = (n− 1)
(
1− e−lt/s

)l
.

Proof: A Bloom filter [17] uses an s-bit array to represent
a t-element set A = {a1, a2, . . . , at}. We assume that the l
hash functions used are random and independent of each other.

The probability that a bit is still 0 after all the elements of A
are hashed into the Bloom filter is (1− 1

s)
lt ≈ e−lt/s. Thus,

the probability that a host is wrongly considered as positive
could be expressed as [1− (1− 1

s)
lt
]l ≈ (1− e−lt/s)l.

Since only one host stores the key while all the other n− 1
do not, the formula above then leads to the conclusion.

Theorem 1 and Theorem 4 yield the expected number of
hops one point query takes when adopting FT-Bloom.

Theorem 5. The expected number of hops one point query
process takes can be formulated approximately as follows
when we employ FT-Bloom:

E[hop] = (n− 1)(1− e−lt/s)l + c.

Theorem 2-5 show that both FT-Gap and FT-Bloom generate
far smaller number of false positives and consequently require
fewer hops and less traffic for point queries.

IV. PERFORMANCE EVALUATION

In this section, we evaluate FT-INDEX by simulating a DCN
with n = 128 hosts. We consider the secondary attributes,
which are stored randomly across hosts and indexed by the
unique integer keys in a decided range. We set k = 8 and
gradually increase the number of keys per host, denoted as
kph, from 8000 to 880000, so the total range of keys in D
is equal to [0, n · kph). We set the number of existing keys
as m = β · |D|, where β is the filling factor. In the following

experiments, β is set as 0.8 by default. The queries generated
in our experiments follow two different distribution: Uniform
distribution and Zipf distribution. We calculate the byte size
of global index set on each host (without the maintenance
cost of the Interval-tree) as the index size of both FT-Gap and
FT-Bloom to compare their performance.

In FT-GAP, the format of index is (range, ip, addr) and
there are at most (g + 1)n such elements. In FT-Bloom, the
index is formed as (range, ip, bf, addr) and for any host there
are at most n items. We further assume that range consists
of two integers each with 4 bytes. ip and addr each occupy 4
bytes too. We use the Murmur hash similar as Cassandra [18]
to generate Bloom filters, which is faster than SHA-based
approach and provides as-good collision resistance. To achieve
a better performance, we choose the optimal number of hash
functions as in Section III, which is max(1, bm/n · ln 2c)
because we need at least one hash function for implementation.

The performance of our scheme depends on two main
metrics: false positive rate fpr and number of physical hops
hop during query processing. The fpr is defined as the rate of
the number of hosts visited before finding the result. Different
from fp in Section III, E[fpr] ≈ 0.5 · E[fp]/n because we
sort the result set before forwarding the query. Moreover, we
define the unit of hop as the forwarding cost between two hosts
which are directly linked in the underlying physical network
and choose the number of hop one query takes as another
main metric to evaluate the efficiency and scalability of our
system. All experiments are executed for at least 1000 times
(1000 for Fig. 4(a)-(d) and 10000 for Fig. 5(a)-(d)) and we
exhibit the average values in each figure.

A. Performance of Point Query

Firstly we consider the relationship between the number of
data items and the size of the indices when we fix a false
positive rate. As shown in Fig. 4(a), we set fpr < 1% and
gradually increase m

n . As data number increases, the size of
index of both methods increases almost linearly to keep fpr,
resulting good space-efficiency and scalability with the growth
of data. We can also tell that when fpr < 1%, FT-Bloom
shows better space-efficiency than FT-Gap. Fig. 4(b) exhibits
a similar situation when queries follow the Zipf distribution.
While in Fig. 4(c)(d), FT-Gap performs better than FT-Bloom
when fpr < 0.3% since the size of Bloom array increases
speedily if we raise the accuracy requirement.

Figure 5(a)(b) illustrate the relationship between the size of
index and the fpr. We use the uniformed byte size described
before and fix m

n = 10000. Figure 5(a) shows that with both
methods, the false positive rate decreases exponentially with
the size of index. However, when we further check Fig. 5(b)
in logarithmic scale, we find out that the false positive rate
decreases more rapidly with FT-Gap. When the fpr ≈ 0.05,
the index size of both versions is the same. If we give a more
strict requirement on fpr, FT-Gap would act better. Moreover,
we can slightly increase the size of index (by increasing g or
the size of Bloom array) to achieve sufficiently low false pos-
itive rate and efficient query processing. Similar performance

IEEE ICC 2015 SAC - Data Storage and Cloud Computing

305

6

 400

 800

 1200

 1600

 8000 28000 48000 68000

S
p
a
c
e
 C

o
n
s
u
m

p
ti

o
n
 (

k
b
)

m / n (number of keys per host)

FT-Bloom
FT-Gap

(a) fpr < 1% (Uniform)

 400

 800

 1200

 1600

 8000 28000 48000 68000

S
p
a
c
e
 C

o
n
s
u
m

p
ti

o
n
 (

k
b
)

m / n (number of keys per host)

FT-Bloom
FT-Gap

(b) fpr < 1% (Zipf)

 400

 800

 1200

 1600

 8000 28000 48000 68000

S
p
a
c
e
 C

o
n
s
u
m

p
ti

o
n
 (

k
b
)

m / n (number of keys per host)

FT-Bloom
FT-Gap

(c) fpr < 0.3% (Uniform)

 400

 800

 1200

 1600

 8000 28000 48000 68000

S
p
a
c
e
 C

o
n
s
u
m

p
ti

o
n
 (

k
b
)

m / n (number of keys per host)

FT-Bloom
FT-Gap

(d) fpr < 0.3% (Zipf)

Fig. 4. Comparisons of space consumption w.r.t. the average size per host

 0

 0.05

 0.1

 0.15

 0.2

 50 100 150 200 250 300

F
a
ls

e
 P

o
s
it

iv
e
 R

a
te

Space Consumption (kb)

FT-Bloom
FT-Gap

(a) Uniform (ordinary view)

 1e-05

 0.0001

 0.001

 0.01

 0.1

 10 100

F
a
ls

e
 P

o
s
it

iv
e
 R

a
te

Space Consumption (kb)

FT-Bloom
FT-Gap

(b) Uniform (logarithmic scale)

 0

 0.05

 0.1

 0.15

 0.2

 50 100 150 200 250 300

F
a
ls

e
 P

o
s
it

iv
e
 R

a
te

Space Consumption (kb)

FT-Bloom
FT-Gap

(c) Zipf (ordinary view)

 1e-05

 0.0001

 0.001

 0.01

 0.1

 10 100

F
a
ls

e
 P

o
s
it

iv
e
 R

a
te

Space Consumption (kb)

FT-Bloom
FT-Gap

(d) Zipf (logarithmic scale)

Fig. 5. Effect of false positive rate (fpr) w.r.t. space consumption (kb)

can be seen under the Zipf distribution in Fig. 5(c)(d). Due to
the nature of Zipf distribution there exist small fluctuations of
the fpr when we increase the index size.

B. Performance of Range Query

Here we use FT-Gap as an example to perform range
query. Similarly, we set m

n = 10000, k = 8, g = 50,
and generate range queries with the uniform distribution. The
length of queried ranges is enlarged to evaluate our scheme
and obviously a bigger range would result in more searching
data and traffic cost. Tab. I shows the performance of our
scheme with different range sizes. The experiment shows that
our schemes performs better when the range is relatively small,
especially when handling point queries. Meanwhile, when
the queried range becomes larger, the cost increases almost
linearly with the increase of ranges and keeps in an acceptable
order of magnitude compared to the range size.

TABLE I
RANGE QUERY PERFORMANCE

size 1 128 256 512 640 1024
hop 20 219 285 325 331 335

size(103) 2 15 30 102 204 640
hop 336 339 343 363 390 504

V. CONCLUSION

In this paper we propose a distributed indexing scheme
(named FT-Index) for cloud storage systems with switch-
centric topology. FT-Index consists of two-layers to provide
good scalability and load balance. We adopt indexing tech-
nologies such as the B+-tree and the Interval tree to organize
data set both locally and globally. We also design suitable
global index publishing methods with the use of gap elimi-
nation and Bloom filters to decrease the probability of false
positives and achieve space-efficiency. We then theoretically
analyze the expected performance of FT-Index and execute
various experiments to validate its efficiency and effectiveness.

REFERENCES

[1] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file system.”
in SOSP, 2003, pp. 29–43.

[2] A. Lakshman and P. Malik, “Cassandra: a decentralized structured
storage system.” Operating Systems Review, pp. 35–40, 2010.

[3] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
amazon’s highly available key-value store.” in SOSP, 2007, pp. 205–220.

[4] S. Wu and K.-L. Wu, “An indexing framework for efficient retrieval on
the cloud.” IEEE Data Eng. Bull., pp. 75–82, 2009.

[5] S. Wu, D. Jiang, B. C. Ooi, and K.-L. Wu, “Efficient b-tree based
indexing for cloud data processing,” in VLDB, 2010, pp. 1207–1218.

[6] J. Wang, S. Wu, H. Gao, J. Li, and B. C. Ooi, “Indexing multi-
dimensional data in a cloud system,” in SIGMOD, 2010, pp. 591–602.

[7] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture.” in SIGCOMM, 2008, pp. 63–74.

[8] “Cisco’s massively scalable data center,” http://www.cisco.com/c/dam/
en/us/td/docs/solutions/Enterprise/Data Center/MSDC/1-0/MSDC
AAG 1.pdf.

[9] M. De Berg, M. Van Kreveld, M. Overmars, and O. C. Schwarzkopf,
Computational geometry, 3rd edition. Springer, 2008.

[10] A. Greenberg, J. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. Maltz, P. Patel, and S. Sengupta, “VL2: a scalable and flexible data
center network.” in SIGCOMM, 2009, pp. 51–62.

[11] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis, P. Sharma,
S. Banerjee, and N. McKeown, “Elastictree: Saving energy in data center
networks.” in NSDI, 2010, pp. 249–264.

[12] M. Walraed-Sullivan, A. Vahdat, and K. Marzullo, “Aspen trees: bal-
ancing data center fault tolerance, scalability and cost,” in CoNEXT,
2013.

[13] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, and
S. Lu, “Bcube: a high performance, server-centric network architecture
for modular data centers,” in SIGCOMM, 2009, pp. 63–74.

[14] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu, “Dcell: a scalable
and fault-tolerant network structure for data centers.” in SIGCOMM,
2008, pp. 75–86.

[15] D. Li, C. Guo, H. Wu, K. Tan, and S. Lu, “Ficonn: Using backup port
for server interconnection in data centers.” in INFOCOM, 2009.

[16] D. Guo, T. Chen, D. Li, M. Li, Y. Liu, and G. Chen, “Expandable
and cost-effective network structures for data centers using dual-port
servers.” IEEE Trans. Computers, pp. 1303–1317, 2013.

[17] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Communications of the ACM, pp. 422–426, 1970.

[18] https://git-wip-us.apache.org/repos/asf?p=cassandra.git;a=summary.

IEEE ICC 2015 SAC - Data Storage and Cloud Computing

306

